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Abstract- In this paper, we attempt to find some stability results of duovigintic functional equation in matrix 

normed spaces with the help of fixed point method and we also provide an example for non-stability.  
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1. INTRODUCTION  

The stability of functional equations has 

emerged in relavence with a question posed by Ulam 

[29] in 1940. Hyers [5], brilliantly gave a partial 

solution for the case of the additive Cauchy functional 

equation for mappings between Banach spaces. This 

result was then improved by Aoki [1] and Rassias 

[18], who weakened the condition for the bound of the 

norm of the Cauchy difference. From 1982-1994, J. 

M. Rassias (see [20]- [24]) solved the Ulam problem 

for different mappings and for many Euler-Lagrange 

type quadratic mappings, by involving a product of 

different powers of norms. In 1994, a generalization of 

the Rassias theorem was obtained by Gavruta [4] by 

replacing the unbounded Cauchy difference by a 

general control function. Isac and Th. M. Rassias [6] 

presented some applications in non-linear analysis, 

especially in fixed point theory. This terminology may 

also be applied to the cases of other functional 

equations [2, 19, 28, 30]. Furthermore, the generalized 

Hyers-Ulam stability of functional equations and 

inequalities in matrix normed spaces has been studied 

by a number of authors, [7, 9]. 

 Quite recently, K. Ravi and B. V. Senthil 

Kumar [26, 25, 27] discussed the general solution of 

undecic, duodecic and quattuordecic functional 

equations in quasi   - normed spaces. M. 

Nazarianpoor, J. M. Rassias and Gh. Sadeghi [17] 

were discovered the octadecic functional equation in 

multi-normed spaces. R. Murali et.al.,[12]  

solved the general solution and stability results in 

multi-Banach spaces for the following duovigintic 

functional equation 
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 and they also discovered the other functional 

equations [[13]-[15]] in matrix normed spaces by 

using the fixed point method. In this paper, we study 

the generalized Hyers-Ulam-Rassias, Hyers-Ulam-

Rassias, Ulam-Gavruta-Rassias and J.M. Rassias 

stability results for the above functional equation (1) 

in matrix normed spaces with the help of fixed point 

method. Through out this paper, let us consider 

(  ‖ ‖ ) be a matrix normed space, (  ‖ ‖ ) be a 

matrix Banach space and let   be a fixed non-negative 

integer. 
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for all       and       ,         ( ). 

2. STABILITY OF FUNCTIONAL 

EQUATION (1)  

Theorem 2.1  Let      be fixed and      ,   ) 
be a function such that there exists a     with  
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Proof. For the cases     and     , substituting 

    in (3), we obtain  

‖  (   )‖   (   ) (5) 

Letting (   ) by (     ) and (    ) in (5) 

respectively, and combining the two resulting 

inequality, we arrive at  
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       Considering       and     in (5), one 
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       Multiplying (7) by 22, and then combining 

(6) and the resulting inequality, we arrive at  
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       Multiplying (9) by 231, and then combining 

(8) and the resulting inequality, we get  
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‖( (   )     (   )      (   )  



International Journal of Research in Advent Technology, Vol.6, No.12, December 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

3679 

 

      (   )       (   )        (   )  
      (   )         (   )  
        (   )         (   )         (  ) 

        (  )         (  )  
       (  )         (  )  

       (  )        (  )  
      (  )      ( )‖   (    )  

                                         (11) 

       Multiplying (11) by 1540, and then 

combining (10) and the resulting inequality, we get  
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combining (14) and the resulting inequality, we have  
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combining (16) and the resulting inequality, we arrive 
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       Multiplying (19) by 170544 , and then 

combining (18) and the resulting inequality, we arrive 

at  
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get  
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Claim:1 It is easy to verify that (   ) is a complete 

Generalized metric.(see [8]). 

Claim:2   be a strictly contractive mapping with a 

lipschitz constant is less than 1 

 

 Consider the mapping       defined by 

  ( )  
 

    
 (   )      ,    . Hence 
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 (   )‖ 

                                               ( )                 
This means that   is a contractive mapping with 

lipschitz constant      From (29), we can get 

  (    )  
 
.
   
 /

   
. 

Together Claim 1 and 2 (Theorem 2.2 in [3]), then 

there exists a mapping       which satisfying: 

1.   is a unique fixed point of  , which is 

satisfied  (   )       ( )        
2. (     )    as    . This implies that 
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 (    ), which implies the 

inequality  
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for all      . Therefore, the mapping       is 

duovigintic mapping. By Lemma 2.1 in [9] and (30), 

we can get (4) Thus       is a unique duovigintic 

mapping satisfying (4).  

 

 

Corollary 2.2  Let      be fixed and let     be 

non-negative real numbers with     . Let     
 be a mapping satisfies  
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The proof is similar to the proof of Theorem 2.1. 

 

Corollary 2.3  Let      be fixed and let     be 

non-negative real numbers with     . Let     
 be a mapping satisfies  
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 The proof is similar to the proof of Theorem 2.1. 

 

Corollary 2.4  Let      be fixed and let     be 

non-negative real numbers with     . Let     
 be a mapping such that  
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The proof is similar to the proof of Theorem 2.1. 

 

Now we will provide an example to illustrate 

that the functional equation (1) is not stable for      

in corollary 1. 

 

Example 2.5 Let       be a function defined by  
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where      is a constant, and define a function 

      by  

 ( )  ∑  
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for all      Then   satisfies the inequality 

 

| (   )|  
(                      )
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                                                                                 (34) (34) 

 for all      . Then there does not exist a 

duovigintic mapping       and a constant     

such that  
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Proof. It is easy to see that   is bounded by 
        

       
 

on  . 

If | |   | |    , then (34) is trivial.  

If | |   | |   
 

   
 , then L.H.S of (34) is less than 

(                   )(       ) 

       
  

Suppose that   | |   | |   
 

   
, then there exists 

a non-negative integer   such that  
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for all                . Hence  
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definition of   and (36), we obtain that 
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Therefore,   satisfies (34) for all        Suppose on 

the contrary that there exists a duovigintic mapping 

      and a constant     satisfying (35). Then 

there exists a constant     such that  

 ( )       for any    . 

 Thus we obtain the following inequality  

             | ( )|  (  | |)| |                             (37)           

 Let     with        | |. If   .  
 

    
/, 

then     (   ) 
for all              , and for this case we get 

  ( )  ∑   
   

 (   )

    
   ∑     

   
  ( 

  )  

    
 

                  (  | |)| |    
 

which is a contradiction to above inequality (  )  
Therefore the duovigintic functional equation (1) is 

not stable for       

Conclusion 

In this investigation, we  established  the Hyers-Ulam-

Rassias  stability of the duovigintic  functional 

equation in matrix normed spaces by using the fixed 

point method and also provided an example for non-

stability. 
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